Abstract
In this paper, we propose a two-stage learning framework for visual navigation in which the experience of the agent during exploration of one goal is shared to learn to navigate to other goals. We train a deep neural network for estimating the robot’s position in the environment using ground truth information provided by a classical localization and mapping approach. The second simpler multi-goal Q-function learns to traverse the environment by using the provided discretized map. Transfer learning is applied to the multi-goal Q-function from a maze structure to a 2D simulator and is finally deployed in a 3D simulator where the robot uses the estimated locations from the position estimator deep network. In the experiments, we first compare different architectures to select the best deep network for location estimation, and then compare the effects of the multi-goal reinforcement learning method to traditional reinforcement learning. The results show a significant improvement when multi-goal reinforcement learning is used. Furthermore, the results of the location estimator show that a deep network can learn and generalize in different environments using camera images with high accuracy in both position and orientation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.