Abstract

ABSTRACTThis study presents a two-stage vertex analysis (TSVA) method for the planning of electric power systems (EPS) under uncertainty. TSVA has advantages in comparison to other optimization techniques. Firstly, TSVA can incorporate greenhouse gas (GHG) abatement policies directly into its optimization process, and, secondly, it can readily integrate inherent system uncertainties expressed as fuzzy sets and probability distributions directly into its modeling formulation and solution procedure. The TSVA method is applied to a case study of planning EPS and it is demonstrated how the TSVA efficiently identify optimal electricity-generation schemes that could help to minimize system cost under different GHG-abatement considerations. Different combinative considerations on the uncertain inputs lead to varied system costs and GHG emissions. Results reveal that the total electricity supply will rise up along with the time period due to the increasing demand and, at the same time, more non-fossil fuels should be used to satisfy the increasing requirement for GHG mitigation. Moreover, uncertainties in connection with complexities in terms of information quality (e.g., capacity, efficiency, and demand) result in changed electricity-generation patterns, GHG-abatement amounts, as well as system costs. Minimax regret (MMR) analysis technique is employed to identify desired alternative that reflects compromises between system cost and system-failure risk.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call