Abstract
Biogas-solar-wind integrated energy systems are effective for optimizing rural energy consumption and improving agricultural production. The performance of an integrated energy system generally depends on its capacity configuration. However, the uncertainties of renewable energy sources and loads deepen the coupling relationship between the capacity configuration and energy dispatching of integrated energy systems, which makes optimizing the capacity difficult. We propose a two-stage robust optimization model for the capacity configuration of a biogas-solar-wind integrated energy system that is applicable to rural areas. First, a framework of the biogas-solar-wind integrated energy system was designed and diverse evaluation indices were introduced. Then, the integrated energy system model was transformed into a two-stage robust optimization problem, where the column-and-constraint generation algorithm is used to solve the installed capacity problem of the system equipment in the first stage, and the nested column-and-constraint generation algorithm is used to optimize the energy dispatching schedule in the second stage. Finally, the proposed model was applied to a rural area in China to confirm the rationality and effectiveness of the optimization results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.