Abstract

This paper describes a two-stage methodology that was developed for the classification of electricity customers. It is based on pattern recognition methods, such as k-means, Kohonen adaptive vector quantization, fuzzy k-means, and hierarchical clustering, which are theoretically described and properly adapted. In the first stage, typical chronological load curves of various customers are estimated using pattern recognition methods, and their results are compared using six adequacy measures. In the second stage, classification of customers is performed by the same methods and measures, together with the representative load patterns of customers being obtained from the first stage. The results of the first stage can be used for load forecasting of customers and determination of tariffs. The results of the second stage provide valuable information for electricity suppliers in competitive energy markets. The developed methodology is applied on a set of medium voltage customers of the Greek power system, and the obtained results are presented and discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.