Abstract

Water shortages are common in society, and the effective allocation of limited water resources to each competitive sector has become one of the urgent concerns for water resource managers. With the increasing conflict between supply and demand of water resources, the problem of optimized allocation has attracted considerable attention. In this paper, regarding the Hongxinglong Administration of Heilongjiang Agricultural Reclamation in Sanjiang Plain, China as the study area, a two-stage regional multi-water source allocation (TRMSA) model is introduced to determine the characteristics of water supply sources, which consist of surface water, groundwater and transit water. When water resources managers periodically make different decisions over time, the TRMSA model can express the uncertain problem of water resources allocation as probability distributions and solve these problems effectively. Using this model, the optimized water supply target and shortage with different inflow levels in three sectors, namely, domestic, agriculture and industry, are analyzed for a dry year, and the optimized water allocation can be determined from the water allocation demands in these sectors. In addition, the satisfaction of supply targets in each sector in normal and high years as well as the recognition of the decision variables and different scenarios in this model are also discussed. Thus, water resource managers can obtain variable optimized water allocation schemes according to different water requirements, and decision makers can make practical judgments through multiple choices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call