Abstract

The study proposes a stochastic optimisation approach based on discrete scenarios and the minimax criterion to deal with demand uncertainty in the two-stage unit commitment problem. To avoid making an over-conservative decision, the approach is designed to assign a probability-based weight to each demand scenario and provide a unit commitment schedule that minimises the maximum possible-weighted generation cost. Unit commitment is determined in the first stage and the economic dispatch under the scenario that corresponds to the maximum possible-weighted generation cost is determined in the second stage. The problem is formulated as a type of min–max–min mixed integer programming model. By introducing an auxiliary variable, the model is further transformed into a minimisation problem. A Benders decomposition algorithm is developed to solve the problem. The Benders master problem determines the unit commitment decision, while the Benders subproblem determines the dispatch decision. Multiple Benders feasibility cuts are constructed when the Benders subproblem is infeasible. Valid inequalities are derived to improve the lower bound provided by the Benders master problem. Numerical results show the performance of the algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.