Abstract

The maximum likelihood classification rule is a standard method to classify examinee attribute profiles in cognitive diagnosis models (CDMs). Its asymptotic behaviour is well understood when the model is assumed to be correct, but has not been explored in the case of misspecified latent class models. This paper investigates the asymptotic behaviour of a two-stage maximum likelihood classifier under a misspecified CDM. The analysis is conducted in a general restricted latent class model framework addressing all types of CDMs. Sufficient conditions are proposed under which a consistent classification can be obtained by using a misspecified model. Discussions are also provided on the inconsistency of classification under certain model misspecification scenarios. Simulation studies and a real data application are conducted to illustrate these results. Our findings can provide some guidelines as to when a misspecified simple model or a general model can be used to provide a good classification result.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.