Abstract

This paper explores the benefit of using some of the machine learning techniques and Big data optimization tools in approximating maximum likelihood (ML) detection of Large Scale MIMO systems. First, large scale MIMO detection problem is formulated as a LASSO (Least Absolute Shrinkage and Selection Operator) optimization problem. Then, Alternating Direction Method of Multipliers (ADMM) is considered in solving this problem. The choice of ADMM is motivated by its ability of solving convex optimization problems by breaking them into smaller sub-problems, each of which are then easier to handle. Further improvement is obtained using two stages of LASSO with interference cancellation from the first stage. The proposed algorithm is investigated at various modulation techniques with different number of antennas. It is also compared with widely used algorithms in this field. Simulation results demonstrate the efficacy of the proposed algorithm for both uncoded and coded cases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.