Abstract
Pallasites, stony-iron meteorites predominantly composed of olivine crystals and Fe-Ni metal, are samples of the interior of early solar system bodies and can thus provide valuable insights into the formation of terrestrial planets. However, pallasite origin is controversial, either sampling the core-mantle boundary or the shallower mantle of planetesimals that suffered an impact. We present high strain-rate deformation experiments with the model system olivine + FeS melt ± gold melt to investigate pallasite formation and the evolution of their parent bodies and compare the resulting microstructures to two samples of Seymchan pallasite. Our experiments reproduced the major textural features of pallasites including the different olivine shapes, olivine aggregates, and the distribution of the metal and sulfide phases. These results indicate that pallasites preserve evidence for a two-stage formation process including inefficient core-mantle differentiation and an impact causing disruption, metal melt injection, and fast cooling within months to years. Olivine aggregates, important constituents of angular pallasites, are reinterpreted as samples of a partially differentiated mantle containing primordial metallic melt not stemming from the impactor. The long-term retention of more than 10 vol% of metal melt in a silicate mantle sampled by olivine aggregates indicates high effective percolation thresholds and inefficient metal-silicate differentiation in planetesimals not experiencing a magma ocean stage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.