Abstract

Exploiting RGB and depth information can boost the performance of semantic segmentation. However, owing to the differences between RGB images and the corresponding depth maps, such multimodal information should be effectively used and combined. Most existing methods use the same fusion strategy to explore multilevel complementary information at various levels, likely ignoring different feature contributions at various levels for segmentation. To address this problem, we propose a network using a two-stage cascaded decoder (TCD), embedding a detail polishing module, to effectively integrate high- and low-level features and suppress noise from low-level details. Additionally, we introduce a depth filter and fusion module to extract informative regions from depth cues with the guidance of RGB images. The proposed TCD network achieves comparable performance to state-of-the-art RGB-D semantic segmentation methods on the benchmark NYUDv2 and SUN RGB-D datasets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.