Abstract

Brain waves are proposed as a biometric for verification of the identities of individuals in a small group. The approach is based on a novel two-stage biometric authentication method that minimizes both false accept error (FAE) and false reject error (FRE). These brain waves (or electroencephalogram (EEG) signals) are recorded while the user performs either one or several thought activities. As different individuals have different thought processes, this idea would be appropriate for individual authentication. In this study, autoregressive coefficients, channel spectral powers, inter-hemispheric channel spectral power differences, inter-hemispheric channel linear complexity and non-linear complexity (approximate entropy) values were used as EEG features by the two-stage authentication method with a modified four fold cross validation procedure. The results indicated that perfect accuracy was obtained, i.e. the FRE and FAE were both zero when the proposed method was tested on five subjects using certain thought activities. This initial study has shown that the combination of the two-stage authentication method with EEG features from thought activities has good potential as a biometric as it is highly resistant to fraud. However, this is only a pilot type of study and further extensive research with more subjects would be necessary to establish the suitability of the proposed method for biometric applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call