Abstract

Abstract Olive mill wastewater (OMW) is a highly polluting wastewater, caused by a high organic load and phenol content. These characteristics suggest that it may be suitable for aerobic treatment and anaerobic bacterial digestion. Aerobic treatment coupled with anaerobic bacterial digestion may be economically feasible as the methane produced is a valuable energy source while simultaneously purifying the OMW. In an attempt to improve the overall performance of the process, the addition of a co-substrate such as whey to the aerobic treatment pre-treatment of OMW by the yeast Candida tropicalis was studied. The two-stage system operated satisfactorily up to an organic loading rate (OLR) of 3.0 kg COD L−1 day−1 with a biogas production rate of 1.25 Lbiogas Lreactor−1 day−1 and a total COD reduction in excess of 93% (62% COD reduction in aerobic pretreatment and 83% COD reduction in anaerobic digestion). Fifty-four percent of the phenol was biodegraded during the aerobic treatment stage, and biogas with between 68% and 75% methane was produced during anaerobic digestion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.