Abstract

Temporal logic has been successfully used for modeling and analyzing the behavior of reactive and concurrent systems. Standard temporal logic is inadequate for real-time applications because it only deals with qualitative timing properties. This is overcome by metric temporal logics which offer a uniform logical framework in which both qualitative and quantitative timing properties can be expressed by making use of a parameterized operator of relative temporal realization. In this paper we deal with completeness issues for basic systems of metric temporal logic —despite their relevance, such issues have been ignored or only partially addressed in the literature. We view metric temporal logics as two-sorted formalisms having formulae ranging over time instants and parameters ranging over an (ordered) abelian group of temporal displacements. We first provide an axiomatization of the pure metric fragment of the logic, and prove its soundness and completeness. Then, we show how to obtain the metric temporal logic of linear orders by adding an ordering over displacements. Finally, we consider general metric temporal logics allowing quantification over algebraic variables and free mixing of algebraic formulae and temporal propositional symbols.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.