Abstract

The application of bone cements for the treatment of vertebral compression fracture requires radiopaque materials for adequate visualization of the flow under fluoroscopy. Besides high radiopacity, it is desirable for the cement to have relatively low viscosity, high compressive strength and appropriate curing parameters. In this study, the properties of novel two-solution bone cements composed of cross-linked poly (methyl methacrylate) PMMA microspheres or nanospheres added to the linear polymer phase were assessed for formulations with increasing concentrations of zirconium dioxide (ZrO(2)). The addition of a cross-linked phase in the standard two-solution formulation (TSBC) was observed to improve the material properties by increasing setting time and decreasing maximum polymerization temperatures and decreasing the initial viscosity in comparison to the standard cement. The properties of three formulations (TSBC, modified two-solution containing cross-linked PMMA microspheres, and nanospheres) were measured for cements prepared at 0%, 5%, 20%, and 30% ZrO(2) and compared to KyphX. Cements prepared with cross-linked particles exhibited significantly higher compressive strength than the standard-two solution cement and KyphX at increasing radiopacifier concentrations. Furthermore, cement viscosity was increased by the addition of increasing concentrations of ZrO(2) in the modified two-solution cements, whereas the maximum polymerization exotherm and setting time of these materials were decreased. This study indicates that the addition of high concentrations of ZrO(2) significantly affects the properties of two-solution cements acting as a reinforcing phase when cross-linked spheres are added. These materials were observed to be suitable for vertebroplasty applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.