Abstract

Research on complex systems has identified various aggregate relationships in phenomena that describe these systems. Travel length has been characterized by negative power distributions. Controversy, however, exists over whether mobility patterns can be modeled in terms of a simple power law (Lévy flight model) or that more complicated power laws (exponential power law, truncated Pareto) are required. This study concentrates on two issues: testing the validity of exponential power laws and truncated Pareto distributions in urban systems to describe aggregate mobility patterns, and examining differences in mobility patterns for different travel purposes. The article describes the results of an analysis of Global Positioning System (GPS) taxi trajectory data, collected in Guangzhou, China, to identify mobility patterns in the city. The least squares statistic is used to estimate the parameters of the distribution functions. Results suggest that a fusion of functions, based on an exponential power law and a truncated Pareto distribution, represents the travel time distribution best. Moreover, the findings of this study indicate different mobility patterns to exist for different travel purposes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.