Abstract

Due to recent important work of Zyczkowski and Sommers (quant-ph/0302197 and quant-ph/0304041), exact formulas are available (both in terms of the Hilbert-Schmidt and Bures metrics) for the (n^2-1)-dimensional and (n(n-1)/2-1)-dimensional volumes of the complex and real n x n density matrices. However, no comparable formulas are available for the volumes (and, hence, probabilities) of various separable subsets of them. We seek to clarify this situation for the Hilbert-Schmidt metric for the simplest possible case of n=4, that is, the two-qubit systems. Making use of the density matrix (rho) parameterization of Bloore (J. Phys. A 9, 2059 [1976]), we are able to reduce each of the real and complex volume problems to the calculation of a one-dimensional integral, the single relevant variable being a certain ratio of diagonal entries, nu = (rho_{11} rho_{44})/{rho_{22} rho_{33})$. The associated integrand in each case is the product of a known (highly oscillatory near nu=1) jacobian and a certain unknown univariate function, which our extensive numerical (quasi-Monte Carlo) computations indicate is very closely proportional to an (incomplete) beta function B_{nu}(a,b), with a=1/2, b=sqrt{3}in the real case, and a=2 sqrt{6}/5, b =3/sqrt{2} in the complex case. Assuming the full applicability of these specific incomplete beta functions, we undertake separable volume calculations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call