Abstract
Quantum teleportation is of significant meaning in quantum information. In this paper, we study the probabilistic teleportation of a two-qubit entangled state via a partially entangled Greenberger-Horne-Zeilinger (GHZ) state when the quantum channel information is only available to the sender. We formulate it as an unambiguous state discrimination problem and derive exact optimal positive-operator valued measure (POVM) operators for maximizing the probability of unambiguous discrimination. Only one three-qubit POVM for the sender, one two-qubit unitary operation for the receiver, and two cbits for outcome notification are required in this scheme. The unitary operation is given in the form of a concise formula, and the fidelity is calculated. The scheme is further extended to more general case for transmitting a two-qubit entangled state prepared in arbitrary form. We show this scheme is flexible and applicable in the hop-by-hop teleportation situation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.