Abstract

The fidelity of two-qubit gates using silicon spin qubits is limited by charge noise. When attempting to dynamically compensate for charge noise using local echo pulses, crosstalk can cause complications. We present a method of using a deep neural network to optimize the components of an analytically designed composite pulse sequence, resulting in a two-qubit gate robust against charge noise errors while also taking crosstalk into account. We analyze two experimentally motivated scenarios. For a scenario with strong EDSR driving and negligible crosstalk, the composite pulse sequence yields up to an order of magnitude improvement over a simple cosine pulse. In a scenario with moderate ESR driving and appreciable crosstalk such that simple analytical control fields are not effective, optimization using the neural network approach allows one to maintain order-of-magnitude improvement despite the crosstalk.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call