Abstract

The maximum principle is one of the most important tools in the analysis of geometric partial differential equations. Traditionally, the maximum principle is applied to a scalar function defined on a manifold, but in recent years more sophisticated versions have emerged. One particularly interesting direction involves applying the maximum principle to functions that depend on a pair of points. This technique is particularly effective in the study of problems involving embedded surfaces. In this survey, we first describe some foundational results on curve shortening flow and mean curvature flow. We then describe Huisken’s work on the curve shortening flow where the method of two-point functions was introduced. Finally, we discuss several recent applications of that technique. These include sharp estimates for mean curvature flow as well as the proof of Lawson’s 1970 conjecture concerning minimal tori in S 3 S^3 .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.