Abstract

We have developed an image-processing method for characterizing the microstructure of rock and other porous materials, and for providing a quantitative means for understanding the dependence of physical properties on the pore structure. This method is based upon the statistical properties of the microgeometry as observed in scanning electron micrograph (SEM) images of cross sections of porous materials. The method utilizes a simple statistical function, called the spatial correlation function, which can be used to predict bounds on permeability and other physical properties. We obtain estimates of the porosity and specific surface area of the material from the two-point correlation function. The specific surface area can be related to the permeability of porous materials using a Kozeny-Carman relation, and we show that the specific surface area measured on images of sandstones is consistent with the specific surface area used in a simple flow model for computation of permeability. In this paper, we discuss the two-point spatial correlation function and its use in characterizing microstructure features such as pore and grain sizes. We present estimates of permeabilities found using SEM images of several different synthetic and natural sandstones. Comparison of the estimates to laboratory measurements shows good agreement. Finally, we briefly discuss extension of this technique to two-phase flow.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.