Abstract

We report on the upconversion luminescence of transition metal Mn ions doped germanate glass exited by an infrared femtosecond laser at room temperature. The luminescent spectra exhibited that the upconversion luminescence originates from the Mn2+ ions. The dependence of the fluorescence intensity on the pump power reveals that a two-photon excitation process dominates in the conversion of infrared radiation to the visible emission. It is suggested that the simultaneous absorption of two infrared photons produces the population of upper excited states, which leads to the characteristic visible emission. Furthermore, we observed that the photo-oxidation of Mn2+ ions to Mn3+ ions by measuring the absorption spectra of the Mn ions doped germanate glass before and after femtosecond laser irradiation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call