Abstract

We studied optical second harmonic generation (SHG) oscillations during the growth of Ag films on Si(1 1 1) 7 × 7 clean and H-terminated surfaces. In the growth on the 7 × 7 surfaces at room temperature, the second and third peaks of the oscillation shift towards the thinner side with an increase in pump photon energy. Our analysis revealed that these peaks are caused by two-photon resonant transitions from the n = 1 and 2 occupied quantum well states (QWSs) in the Ag film to the Ag/Si interface at 1.9 eV above the Fermi level ( E f). In Ag growth on the hydrogen-terminated surfaces, the SHG oscillation was similar to that on the 7 × 7 surfaces at room temperature. However, the QWS-related peak was suppressed in the growth at 300 °C. This is attributed to an inhibited intrusion of the interface state into the Ag layers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.