Abstract

In this study, the degree of conversion (DC) of an acrylic-based resin (IP-L 780) in two-photon polymerization (TPP) is systematically investigated via Raman microspectroscopy. A quantitative relationship between TPP laser parameters and the DC of the resin is established. Nonlinear increase in DC with increased laser average power is observed. The resin DC is more sensitive to the laser average power than the laser writing speed. Nanoindentation was employed to correlate the results obtained from Raman microspectroscopy with the mechanical properties of microstructures fabricated by TPP. At constant writing speeds, microstructures fabricated with high laser average powers possess high hardness and high reduced Young's modulus (RYM), indicating high DCs. The results are in line with high DCs measured under the same TPP parameters in Raman microspectroscopy. Raman microspectroscopy is proved to be an effective, rapid, and nondestructive method characterizing microstructures fabrication by TPP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call