Abstract

The two-photon photodissociation of expansion-cooled NO2 has been studied using dissociation and simultaneous two-photon l.i.f probing of the nascent NO(X) by a single scanning dye laser in the 428, 450 and 475 nm wavelength range corresponding to the γ(2, 1)γ(1, 0)γ(0, 0) and γ(0, 1) two-photon bands of NO. While the nascent NO formed in the 450 nm region exhibits a Boltzmann-like rotational population distribution, a distinct bimodal distribution is observed in the 475 nm region. Attention is drawn to the possibility that these differences reflect different branching ratios between the O(3P) and O(1D) dissociation channels and that the branching ratio varies with wavelength and the nature of the intermediate state involved at the one-photon level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.