Abstract

A two-photon nitric oxide (NO) laser-induced fluorescence (LIF) technique was developed and applied to study in-cylinder diesel combustion. The technique prevents many problems associated with in-cylinder, single-photon NO planar-laser-induced fluorescence measurements, including fluorescence interference from the Schumann-Runge bands of hot O2, absorption of a UV excitation beam by in-cylinder gases, and difficulty in rejecting scattered laser light while simultaneously attempting to maximize fluorescence signal collection. Verification that the signal resulted from NO was provided by tuning of the laser to a vibrational off-resonance wavelength that showed near-zero signal levels, which resulted from either fluorescence or interference at in-cylinder pressures of as much as 20 bar. The two-photon NO LIF signal showed good qualitative agreement with NO exhaust-gas measurements obtained over a wide range of engine loads.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.