Abstract

Construction of multifunctional nonviral gene vectors to execute defined tasks holds great potential for the precise and effective treatment of gene-associated diseases. Herein, we have developed four large π-conjugation triphenylamine derivatives bearing two polar [12]aneN3 heads and a lipophilic tail for applications in gene delivery, one/two-photon-triggered near-infrared (NIR) fluorescence bioimaging, and combined photodynamic therapy (PDT) and gene therapy of cancer. These compounds possess typical NIR aggregation-induced emission characteristics, mega Stokes shifts, strong two-photon excitation fluorescence, and excellent DNA condensation abilities. Among them, vector 4 with a tail of n-hexadecane realized a transfection efficiency as high as 6.7 times that of the commercial transfection agent Lipofectamine 2000 in HEK293T cell lines. Using vector 4 as an example, transfection process tracking and ex vivo/in vivo tumoral imaging and retention with high resolution, high brightness, deep tissue penetration, and good biosafety were demonstrated. In addition, efficient singlet oxygen (1O2) generation by the DNA complex formed by vector 4 (4/DNA) resulted in effective PDT. Combined with anticancer gene therapy, collaborative cancer treatment with a dramatically enhanced cancer cell-killing effect was achieved. The development of this "three birds, one stone" approach suggests a new and promising strategy for better cancer treatment and real-time tracking of gene delivery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.