Abstract
A common property during tumor development is altered energy metabolism, which could lead to a switch from oxidative phosphorylation and glycolysis. The impact of this switch for theranostic applications could be significant. Interestingly altered metabolism could be correlated with a change in the fluorescence lifetimes of both NAD(P)H and FAD. However, as observed in a variety of investigations, the situation is complex and the result is influenced by parameters like oxidative stress, pH or viscosity. Besides metabolism, oxygen levels and consumption has to be taken into account in order to understand treatment responses. For this, correlated imaging of phosphorescence and fluorescence lifetime parameters has been investigated by us and used to observe metabolic markers simultaneously with oxygen concentrations. The technique is based on time correlated single photon counting to detect the fluorescence lifetime of NAD(P)H and FAD by FLIM and the phosphorescence lifetime of newly developed phosphors and photosensitizers by PLIM. For this, the photosensitizer TLD1433 from Theralase, which is based on a ruthenium (II) coordination complex, was used. TLD1433 which acts as a redox indicator was mainly found in cytoplasmatic organelles. The most important observation was that TLD1433 can be used as a phosphor to follow up local oxygen concentration and consumption during photodynamic therapy. Oxygen consumption was accompanied by a change in cell metabolism, observed by simultaneous FLIM/PLIM. The combination of autofluorescence-FLIM and phosphor-PLIM in luminescence lifetime microscopy provides new insights in light induced reactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.