Abstract

Myopia and keratoconus have become common corneal diseases that threaten the quality of human vision, and keratoconus is one of the most common indications for corneal transplantation worldwide. Collagen crosslinking (CXL) using riboflavin and ultraviolet A (UVA) light is an effective approach for treating ophthalmic disorders and has been shown clinically not only to arrest further progression of keratoconus but also to improve refractive power for cornea. However, CXL surgery irradiated by UVA has various potential risks such as surface damage and endothelial cell damage. Here, near-infrared femtosecond laser-based two-photon CXL was first applied to ex vivo human corneal stroma, operating at low photon energy with high precision and stability. After two-photon CXL, the corneal stiffness can be enhanced by 300% without significantly reducing corneal transparency. These findings illustrate the optimized direction that depositing high pulses energy in corneal focal volume (not exceeding damage threshold), and pave the way to 3D CXL of in vivo human cornea with higher safety, precision, and efficacy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.