Abstract
Charge-transfer octupolar molecules can form clusters in solution through intermolecular hydrogen bonds. In the present work we explore the role of such clustering on two-photon absorption (TPA) spectra assuming 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) as a model system. Using density functional quadratic response theory we examine different cluster structures of TATB dimers, trimers, and tetramers taken from snapshots of molecular dynamics simulations. In comparison with the TPA spectrum of a monomer, significant red shifts of charge-transfer states are predicted for all chosen clusters, which mainly is the result of the distortion of the structures induced by the aggregation. The TPA spectra for dimers and trimers show strong conformation dependence, whereas they turn out to be more stable for tetramers. Enhancements of TPA absorption have also been found for clusters containing less distorted molecules connected by hydrogen bonds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.