Abstract
In this study, a novel two-phase image segmentation algorithm (TPIS) by using nonlocal mean filter and kernel evolutionary clustering in local learning is proposed. Currently, the difficulties for image segmentation lie in its vast pixels with overlapping characteristic and the noise in the different process of imaging. Here, we want to use nonlocal mean filter to remove different types of noise in the image, and then, two kernel clustering indices are designed in evolutionary optimization. Besides, the local learning strategy is designed using local coefficient of variation of each local pixels or image patch is employed to update the quality of the local segments. The new algorithm is used to solve different image segmentation tasks. The experimental results show that TPIS is competent for segmenting majority of the test images with high quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.