Abstract

The versatile applicability of rare earth elements (REEs) especially lanthanum (La) in diverse fields, has led to large-scale mineral exploitation globally, inevitably resulting in substantial release of La into environment. As emerging anthropogenic environmental contaminant, La-induced toxicological effects and potential ecotoxicological implications in relation to realistic levels of La in aquatic ecosystems are becoming major concerns. To address these issues, Daphnia magna was selected as a prototype, and toxicity tests were conducted to explore the effects of La exposure on life-history characteristics and fecundity fitness, as showcased by quantitative variations from the individual level to population scale. In parallel, to further denote transgenerational caloric impacts of parental La exposure, bioenergetic profiles on newborn neonates were concurrently determined by measuring macromolecule forms in terms of proteins, glycogens and lipids to quantify nutritional alterations at progeny level. The results revealed that low-dose La exposure slightly stimulated the demographic potential and nutritional responses, exhibiting dose-dependent hormesis-like effects and promising non-toxicological potential to Daphnia, whereas high-dose La exposure of greater than 59.2 µg La L − 1, conspicuously imposed detrimental effects on quantity and quality of offspring, i.e. not only reducing body size, lifespan expectancy and reproductive output in a concentration-dependent way and resulting in lower population fitness by a dynamic life-table analysis, but eventually leading to the decrease of nutritional qualities and caloric contents on neonates. Taken together, these two-phase findings regarding the dose-related shift from hormesis to inhibition not only provided valuable insights into the complicated biological outcomes of La effects on environmentally-relevant organisms, but experimentally highlighted the significant implications of considering environmental and nutritional consequences in ecologically assessing the La-triggered risk at environmentally realistic occurrences, particularly on gradient scenarios crossing upstream and downstream of highly complex mining watersheds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.