Abstract

Observations on degradation performance are often used to analyze the underlying degradation process of highly reliable products. From the two-phase degradation path of the bearing performance observations, we observed that there exists an abrupt increase in degradation measurement at a change point. Then, the following degradation process started with the abrupt degradation measurement will degrade in a higher degradation rate. Here, a stochastic process-based degradation model is constructed to interpret the jump at the change point in the degradation process which is governed by the linear Wiener process. Meanwhile, the distribution of the first passage time over a prespecified threshold for the process is discussed. In addition, to get the estimates of the model parameter, the expectation-maximization algorithm is utilized since the change points are unobservable. Furthermore, to demonstrate the model's advantages over estimate, a comparison is made between the proposed and the existing known models from the literature. The results reveal that considering the jump in the degradation process can improve the accuracy of estimations in real applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.