Abstract
We analyze localization of interacting excitations in a system of qubits or spins. The system is modeled by a spin chain with an anisotropic (XXZ) exchange coupling in a magnetic field. Localization occurs on a defect with an excess on-site spin-flip energy. Such a defect corresponds to a qubit with the level spacing different from other qubits. Because of the interaction, a single defect may lead to multiple localized states. We find energy spectra and localization lengths of the two-excitation states. An excitation remains localized on the defect even where energy conservation allows scattering into extended states. This is due to destructive quantum interference in the two-excitation scattering channels, and it facilitates the operation of a quantum computer. Analytical results are obtained for strong anisotropy and are confirmed by numerical studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.