Abstract

We propose a simple schematic model for two-neutron halo nuclei. In this model, the two valence neutrons move in a one-dimensional mean field, interacting with each other via a density-dependent contact interaction. We first investigate the ground-state properties and demonstrate that the dineutron correlation can be realized with this simple model due to the admixture of even- and odd-parity single-particle states. We then solve the time-dependent two-particle Schrödinger equation under the influence of a time-dependent one-body external field, in order to discuss the effect of dineutron correlation on nuclear breakup processes. The time evolution of two-particle density shows that the dineutron correlation enhances the total breakup probability, especially for the two-neutron breakup process, in which both the valence neutrons are promoted to continuum scattering states. We find that the interaction between the two particles definitely favors a spatial correlation of the two outgoing particles, which are mainly emitted in the same direction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call