Abstract

This paper addresses the problem of scheduling jobs on a two-machine open shop subject to constraints given by an agreement graph G, such that jobs can be processed simultaneously on different machines if and only if they are represented by adjacent vertices in G. The problem of minimizing the maximum completion time (makespan) is strongly NP-hard for three distinct values of processing times and for G being a bipartite graph. We extend the study presented in [3] and [4] to the proportionate open shop system. We first prove the NP-hardness of the case of two values of processing times and more general agreement graphs which closes definitely the complexity status of the problem. Then, we present some restricted cases that can be solved in polynomial time. We also derive new complexity results of the open shop under resource constraints and of the partition into triangles problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.