Abstract

The detection of two-line element (TLE) outliers and space events play a crucial role in enhancing spatial situational awareness. Therefore, this paper addresses the issue of TLE outlier detection methods that often overlook the mutual influence of multiple factors. Hence, a Multivariate Gaussian Mixture Model (MGMM) is introduced to consider the interdependencies among various indicators. Additionally, a Multi-strategy Genetic Algorithm (MGA) is employed to adjust the complexity of the MGMM, allowing it to accurately learn the actual distribution of TLE data. Initially, the proposed method applies probabilistic fits to the predicted error rate changes for both the TLE semi-major axis and the orbital inclination. Chaos initialization, a posterior probability penalty, and local optimization iterations are subsequently integrated into the genetic algorithm. These enhancements aim to estimate the MGMM parameters, addressing issues related to poor robustness and the susceptibility of the MGMM to converge to local optima. The algorithm’s effectiveness is validated using TLE data from typical space targets. The results demonstrate that the optimized algorithm can efficiently detect outliers and maneuver events within complex TLE data. Notably, the comprehensive detection performance index, measured, using the F1 score, improved by 15.9% compared to the Gaussian mixture model. This significant improvement underscores the importance of the proposed method in bolstering the security of complex space environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.