Abstract

This paper presents optimal amplify-and-forward (AF) relay amplifying matrices based on the minimum mean square error (MMSE) criterion for a cooperative AF wireless relay network consisting of a one-source-one-destination node pair and two-level N relay nodes. During data transmission, power is constrained at the source node, at the relay nodes in the first and the second levels, and at the destination node. In addition, this paper considers the case that power is intentionally not constrained. Hence, for the no-power constraint example, a positive scaling factor is employed to meet the target signal-to-noise ratio (SNR <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">TGT</sub> ) at the destination node. With the derived optimal relay amplifying matrices, bit error rate (BER) of the wireless relay network under both power and no-power constraint is simulated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.