Abstract
Two-level systems for oral delivery of therapeutic peptides were developed; the carriers consist of CaCO3 cores included into alginate granules. Such systems were first used for the delivery of low molecular weight drugs. It was shown that efficiency of encapsulation of peptides depends on their pI value, hydrophobicity, characteristics of the compounds used for doping CaCO3 cores, their surface potential and the techniques employed for loading peptides into the first-level carriers. Doping CaCO3 cores with dextran sulphate save their viability compared to the pristine CaCO3 cores, but ensures delivery of the desired quantity of peptide when using a smaller amount of delivery systems. Introducing the inhibitor of peptidases leads to an increase in the concentration of peptide in rat blood after intragastric administration of the developed delivery systems. Scanning electron microscopy and energy-dispersive X-ray spectroscopy demonstrated the presence of fragments of destructed first-level carriers in blood and plasma of experimental animals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.