Abstract

In order to meet the ever-increasing computing requirement in the embedded market, multiprocessor chips were proposed as the best way out. In this work we investigate the energy consumption in these embedded MPSoC systems. One of the efficient solutions to reduce the energy consumption is to reconfigure the cache memories. This approach was applied for one cache level/one processor architecture, but has not yet been investigated for multiprocessor architecture with two level caches. The main contribution of this paper is to explore two level caches (L1/L2) multiprocessor architecture by estimating the energy consumption. Using a simulation platform, we first built a multiprocessor architecture, and then we propose a new algorithm that tunes the two-level cache memory hierarchy (L1 and L2). The tuning caches approach is based on three parameters: cache size, line size, and associativity. To find the best cache configuration, the application is divided into several execution intervals. And then, for each interval, we generate the best cache configuration. Finally, the approach is validated using a set of open source benchmarks; Spec 2006, Splash-2, MediaBench and we discuss the performance in terms of speedup and energy reduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.