Abstract
Haplotype Inference is a challenging problem in bioinformatics that consists in inferring the basic genetic constitution of diploid organisms on the basis of their genotype. This information enables researchers to perform association studies for the genetic variants involved in diseases and the individual responses to therapeutic agents. A notable approach to the problem is to encode it as a combinatorial problem under certain hypotheses (such as the pure parsimony criterion) and to solve it using off-the-shelf combinatorial optimization techniques. At present, the main methods applied to Haplotype Inference are either simple greedy heuristic or exact methods, which are adequate only for moderate size instances. In this paper, we present an iterative constructive approach to Haplotype Inference based on ACO and we compare it against a state-of-the-art exact method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.