Abstract

We study two-layer neural networks whose domain and range are Banach spaces with separable preduals. In addition, we assume that the image space is equipped with a partial order, i.e. it is a Riesz space. As the nonlinearity we choose the lattice operation of taking the positive part; in case of $\mathbb R^d$-valued neural networks this corresponds to the ReLU activation function. We prove inverse and direct approximation theorems with Monte-Carlo rates, extending existing results for the finite-dimensional case. In the second part of the paper, we consider training such networks using a finite amount of noisy observations from the regularisation theory viewpoint. We discuss regularity conditions known as source conditions and obtain convergence rates in a Bregman distance in the regime when both the noise level goes to zero and the number of samples goes to infinity at appropriate rates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.