Abstract

In this paper, we present a second-order accurate Crank-Nicolson scheme for the two-grid finite element methods of the nonlinear Sobolev equations. This method involves solving a small nonlinear system on a coarse mesh with mesh size H and a linear system on a fine mesh with mesh size h, which can still maintain the asymptotically optimal accuracy compared with the standard finite element method. However, the two-grid scheme can reduce workload and save a lot of CPU time. The optimal error estimates in H1-norm show that the two-grid methods can achieve optimal convergence order when the mesh sizes satisfy h = O(H2). These estimates are shown to be uniform in time. Numerical results are provided to verify the theoretical estimates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call