Abstract

AbstractGiven a combinatorial design with block set , the block‐intersection graph (BIG) of is the graph that has as its vertex set, where two vertices and are adjacent if and only if . The i‐block‐intersection graph (i‐BIG) of is the graph that has as its vertex set, where two vertices and are adjacent if and only if . In this paper, several constructions are obtained that start with twofold triple systems (TTSs) with Hamiltonian 2‐BIGs and result in larger TTSs that also have Hamiltonian 2‐BIGs. These constructions collectively enable us to determine the complete spectrum of TTSs with Hamiltonian 2‐BIGs (equivalently TTSs with cyclic 2‐intersecting Gray codes) as well as the complete spectrum for TTSs with 2‐BIGs that have Hamilton paths (i.e. for TTSs with 2‐intersecting Gray codes). In order to prove these spectrum results, we sometimes require ingredient TTSs that have large partial parallel classes; we prove lower bounds on the sizes of partial parallel classes in arbitrary TTSs, and then construct larger TTSs with both cyclic 2‐intersecting Gray codes and parallel classes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.