Abstract

In this paper, algorithms for the solution of two-fluid plasma equations are presented and applied to the study of field-reversed configurations (FRCs). The two-fluid model is more general than the often used magnetohydrodynamic (MHD) model. The model takes into account electron inertia, charge separation, and the full electromagnetic field equations, and it allows for separate electron and ion motion. The algorithm presented is the high-resolution wave propagation scheme. The wave propagation method is based on solutions to the Riemann problem at cell interfaces. Operator splitting is used to incorporate the Lorentz and electromagnetic source terms. The algorithms are benchmarked against the Geospace Environmental Modeling Reconnection Challenge problem. Equilibrium of FRC is studied. It is shown that starting from a MHD equilibrium produces a relaxed two-fluid equilibrium with strong flows at the FRC edges due to diamagnetic drift. The azimuthal electron flow causes lower-hybrid drift instabilities (LHDI), which can be captured if the ion gyroradius is well resolved. The LHDI is known to be a possible source of anomalous resistivity in many plasma configurations. LHDI simulations are performed in slab geometries and are compared to recent experimental results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call