Abstract

The stabilization of tearing modes with rf waves is subject to a nonlinear effect, termed rf current condensation, that has the potential to greatly enhance and localize current driven within magnetic islands. Here we extend previous investigations of this effect with a two fluid model that captures the balance of diffusive and thermal equilibration processes within the island. We show that the effective power and resulting strength of the condensation effect can be greatly enhanced by avoiding collisional heat loss to the ions. The relative impact of collisions on the overall power balance within the island depends on the ratio of the characteristic diffusion timescale and the electron–ion equilibration time, rather than the latter alone. Although relative heat loss to ions increases with island size, the heating efficiency does as well. In particular, we show that the latter safely dominates for large deposition profiles, as is typically the case for lower hybrid current drive. This supports the possibility of passive stabilization of neoclassical tearing modes without the precise aiming of the rf waves required for electron cyclotron current drive stabilization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.