Abstract

Here, we present a multi-scale two-directional two-dimensional principal component analysis (MS2D2PCA) method for the efficient and effective extraction of essential feature information from signals. Time-invariant multi-scale matrices are constructed in the first step. The two-directional two-dimensional principal component analysis then operates on the multi-scale matrices to reduce the dimension, rather than vectors in conventional PCA. Results are presented from an experiment to classify twenty hand motions using 89-channel EMG signals recorded in stroke survivors, which illustrates the efficiency and effectiveness of the proposed method for biomedical signal analysis. With this multi-scale two-directional two-dimensional principal component analysis for high-dimensional signal classification, spatial-time-frequency discriminant information from high-dimensional EMG electrode array can be effectively extracted and reduced using the proposed method. Compared with the time domain feature extraction in conjunction with PCA, MS2D2PCA performed better with higher classification accuracy and less PCs in EMG classification. The efficiency and effectiveness of the method can be further validated by using high-dimensional EEG, MEG, fMRI signals. Although the present study focuses on high-dimensional signal pattern classification, based on the PCs obtained at multiple scales, it is relatively straightforward to expand MS2D2PCA for high-dimensional signal compression, denoising, component extraction, and other related tasks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call