Abstract
Epitaxial thin films made of nanosized yttria-stabilized zirconia islands deposited on (0001) sapphire substrates are synthesized by sol–gel dip-coating followed by a high-temperature post-deposition thermal annealing procedure. At high temperatures, a competitive growth process takes place that allows to obtain thin films made of atomically flat islands with an in-plane diameter typically ten times higher than the thickness or on the contrary inducing the formation of dome-shaped islands. Apart from having a different shape, these islands are also characterized by a different crystallographic orientation with respect to the substrates respectively (001) and (111). In this paper, we investigate the influence of the substrate surface roughness on this competitive grain growth process. The deposition on epi-polished substrates results in a two-dimensional (2D) island growth, whereas the deposition on rough substrates results in a three-dimensional (3D) growth of dome-shaped nanosized islands. The films have been characterized by atomic force microscopy and high-resolution X-ray diffraction using the reciprocal space mapping technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.