Abstract

Two-dimensional travelling waves on an ideal fluid with gravity and surface tension over a periodically moving bottom with a small amplitude are studied. The bottom and the wave travel with a same speed. The exact Euler equations are formulated as a spatial dynamic system by using the stream function. A manifold reduction technique is applied to reduce the system into one of ordinary differential equations with finite dimensions. A homoclinic solution to the normal form of this reduced system persists when higher-order terms are added, which gives a generalized solitary wave—the homoclinic solution connecting a periodic solution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.