Abstract

Silicon carbide and other group-IV binary materials with 1:1 stoichiometry are trivial semiconductors. Using first-principles calculations combined with a tight-binding model, we demonstrate two-dimensional (2D) silicon carbide materials (siligraphenes) with 1:3 and 3:1 stoichiometries are topological insulators (TIs) superior to graphene. Dirac cones and topologically nontrivial electronic structures are predicted in these binary honeycomb lattices. The band gaps opened at the Dirac points due to the spin-orbital coupling (SOC) are several orders of magnitude larger than the graphene value. Such interesting properties also exist in their analogs of other group-IV elements, such as g-$\mathrm{Ge}{\mathrm{C}}_{3}$, g-${\mathrm{Ge}}_{3}\mathrm{C}$, g-$\mathrm{Ge}{\mathrm{Si}}_{3}$, and g-${\mathrm{Ge}}_{3}\mathrm{Si}$. The TI states predicted in these unique lattices broaden the application field of group-IV binary materials and open the door to searching for 2D TIs with enhanced SOC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.