Abstract

In this work, the magneto-thermoelastic problem of an infinite microstretch homogeneous isotropic plate placed in a transverse magnetic field is studied in the context of different theories of generalized thermoelasticity. The upper surface of the infinite plate is subjected to a zonal time-dependent heat shock. The problem is investigated by applying finite element method. The solution is obtained by solving finite element governing equations of the problem in time domain directly. The results, including temperature, stresses, displacements, microrotation, microstretch, induced magnetic field, and induced electric field, are presented graphically. Comparison is made in the results predicted by different theories of generalized thermoelasticity, to show that the micropolar effect has a slight influence on the results while the microstretch effect has a great influence on the results. Finally, a parameter study provides an idea about the influence of the respective terms of the theories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.